Topological Value Iteration Algorithms
نویسندگان
چکیده
Value iteration is a powerful yet inefficient algorithm for Markov decision processes (MDPs) because it puts the majority of its effort into backing up the entire state space, which turns out to be unnecessary in many cases. In order to overcome this problem, many approaches have been proposed. Among them, ILAO* and variants of RTDP are state-of-the-art ones. These methods use reachability analysis and heuristic search to avoid some unnecessary backups. However, none of these approaches build the graphical structure of the state transitions in a pre-processing step or use the structural information to systematically decompose a problem, whereby generating an intelligent backup sequence of the state space. In this paper, we present two optimal MDP algorithms. The first algorithm, topological value iteration (TVI), detects the structure of MDPs and backs up states based on topological sequences. It (1) divides an MDP into strongly-connected components (SCCs), and (2) solves these components sequentially. TVI outperforms VI and other state-of-the-art algorithms vastly when an MDP has multiple, close-to-equal-sized SCCs. The second algorithm, focused topological value iteration (FTVI), is an extension of TVI. FTVI restricts its attention to connected components that are relevant for solving the MDP. Specifically, it uses a small amount of heuristic search to eliminate provably sub-optimal actions; this pruning allows FTVI to find smaller connected components, thus running faster. We demonstrate that FTVI outperforms TVI by an order of magnitude, averaged across several domains. Surprisingly, FTVI also significantly outperforms popular ‘heuristically-informed’ MDP algorithms such as ILAO*, LRTDP, BRTDP and Bayesian-RTDP in many domains, sometimes by as much as two orders of magnitude. Finally, we characterize the type of domains where FTVI excels — suggesting a way to an informed choice of solver.
منابع مشابه
Focused Topological Value Iteration
Topological value iteration (TVI) is an effective algorithm for solving Markov decision processes (MDPs) optimally, which 1) divides an MDP into strongly-connected components, and 2) solves these components sequentially. Yet, TVI’s usefulness tends to degrade if an MDP has large components, because the cost of the division process isn’t offset by gains during solution. This paper presents a new...
متن کاملUnified Algorithm to Solve Several Graph Problems with Relational Queries
Several important graph algorithms can be solved as an iteration of vector-matrix multiplication over different semirings. On this basis, we show that the Bellman-Ford (single source shortest paths), reachability, PageRank, and topological sort algorithms can be expressed as relational queries, to solve analytic graph problems in relational databases. As a main contribution, we present a genera...
متن کاملDhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations
In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...
متن کاملExploration in POMDP belief space and its impact on value iteration approximation
Decision making under uncertainty is among the most challenging tasks in the artificial intelligence. Although solution methods to this class of problems are intractable in general, some promising approximation methods have been proposed recently. In particular, point-based planning algorithms for solving partially observable Markov decision processes (POMDPs) have demonstrated that a good appr...
متن کاملNew three-step iteration process and fixed point approximation in Banach spaces
In this paper we propose a new iteration process, called the $K^{ast }$ iteration process, for approximation of fixed points. We show that our iteration process is faster than the existing well-known iteration processes using numerical examples. Stability of the $K^{ast}$ iteration process is also discussed. Finally we prove some weak and strong convergence theorems for Suzuki ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Artif. Intell. Res.
دوره 42 شماره
صفحات -
تاریخ انتشار 2011